
Comparisons of SDN OpenFlow Controllers over
EstiNet: Ryu vs. NOX

Shie-Yuan Wang ∗ Hung-Wei Chiu ∗ and Chih-Liang Chou †
∗Department of Computer Science, National Chiao Tung University, Taiwan

Email: shieyuan@cs.nctu.edu.tw

†EstiNet Technologies, Inc.
Email: clchou@estinet.com

Abstract—SDN (Software-defined Networks) is a new approach
to networking in which the control plane is extracted from the
switch and put into the software application called the controller.
In an SDN, the controller controls all networking switches and
implements specific network protocols or functions. So far, the
OpenFlow protocol is the most popular protocol used to exchange
messages between the controller and OpenFlow switches. In
this paper, we use the EstiNet OpenFlow network simulator
and emulator to compare two open source popular OpenFlow
controllers — Ryu and NOX. We studied the behavior of Ryu
when it controls a network with loops and how quickly Ryu
and NOX can find a new routing path for a greedy TCP flow
after a link’s status has changed. Our simulation results show
that (1) Ryu results in the packet broadcast storm problem in a
network with loops; (2) Ryu and NOX have different behavior
and performance in detecting link failure and changing to a new
routing path.

I. INTRODUCTION

SDN (Software-Defined Networks) [1] is an emerging net-
work architecture. It is a programmable, dynamic, adaptable,
and well-managed network architecture. SDN extracts the
control-plane functions from legacy switches and implements
them into a software application called a controller. Nowadays,
the OpenFlow [2], [3] protocol is the most popular protocol
used for a controller to control SDN switches. Via this pro-
tocol, an OpenFlow switch learns the forwarding information
from the controller and forwards incoming packets based on
the received information. In an SDN network, people often call
a network function implemented by a controller a “controller
application.” A controller application can implement a useful
network function such as network virtualization. With these
applications, network administrators can more easily manage
an SDN network.

In an SDN network, the OpenFlow controller and its various
applications work together to control the network and provide
services. Before one introduces a new controller application
into an SDN network, however, one must validate and evaluate
its correctness, efficiency, and stability. There are several
approaches that can be used for this purpose. One approach
is creating an OpenFlow network testbed with real OpenFlow
switches. Although the results of this approach are convincing,
it incurs very high cost and the network settings cannot be
very flexible. Another approach is via simulation in which
all network switches, links, protocols, their operations, and

the interactions between them are all simulated by a software
program. Generally speaking, if the simulation modeling is
correct enough, the simulation approach is a low-cost, flexible,
scalable, and repeatable approach. This explains its wide uses
in the research communities.

In this paper, we used the EstiNet OpenFlow network
simulator and emulator [4], [5] to compare the behavior and
performance of two popular OpenFlow controllers — Ryu [6]
and NOX [7]. EstiNet uses an innovative simulation method-
ology called the “”kernel-reentering” simulation methodology
to provide many unique advantages. When EstiNet simulates
a network, each simulated host uses the (shared) real-world
Linux operating system and allows any real-world Linux
programs to run over it without any modification. For this
property, the real-life Ryu and NOX controller programs can
readily run over EstiNet to control many simulated OpenFlow
switches and we can create simulation test cases to study the
details of their behavior.

There are several other popular open source OpenFlow
controllers [8]–[10]. The reason why we chose to study NOX
and Ryu is because NOX is the world’s first OpenFlow
controller and Ryu is widely used with the OpenStack cloud
operating system for cloud orchestration. Both Ryu and NOX
are real-world applications written in the python language and
they are runnable on any operating system supporting python.
In this paper, we chose the learning bridge protocol (LBP)
and spanning tree protocol (STP) controller applications to
study. We observed the phenomenon when using Ryu as the
OpenFlow controller in a network with loops and studied how
quickly Ryu and NOX can find a new path for a greedy TCP
flow after a link’s status has changed. We also studied the
impact of the address resolution protocol (ARP) on the path-
changing time for a greedy TCP flow under the control of
Ryu and NOX. Our results reported in this paper reveal the
performance, behavior, and implementation flaws of NOX and
Ryu over the tested network settings.

II. SIMULATION SETTINGS

Figure 1 shows the network topology that we used for this
study. Each of node 3, 4, 5 and 11 simulates a host running
the real-world Linux operating system (Fedora 14). On top of
these nodes, any real-world Linux program can run without



The International Symposium on Advances in Software Defined Networks, April 19-24, 2015, Barcelona, Spain

modification. Each of node 6, 7, 8, 9 and 10 simulates an
OpenFlow switch supporting the OpenFlow protocol version
1.0. Node 1 is a simulated host on top which the Ryu or NOX
OpenFlow controller program will run. Node 2 is a simulated
legacy switch that connects all simulated OpenFlow switches
together with the OpenFlow controller node. This formed
network is the control-plane network. All TCP connections
between simulated OpenFlow switches and the OpenFlow
controller are set up over the control-plane network and
the messages between Ryu/NOX and simulated OpenFlow
switches are all exchanged over this control-plane network.
In contrast, all simulated hosts, simulated OpenFlow switches
and all links connecting them together form the data-plane
network and the real applications running on simulated hosts
will exchange their information over the data-plane network.

Fig. 1: Spanning Tree in NOX before the link(6,7) breaks

We studied two simulation cases on the network topology
shown in Figure 1. We set the link delay and bandwidth to
10 ms and 100 Mbps for each link in these simulation cases.
Both cases start at 0’th sec and ends at 120’th sec. In case 1,
we only used Ryu as the OpenFlow controller. Because Ryu
only uses LBP (Learning Bridge Protocol) to forward packets
without using SPT (Spanning Tree Protocol), we wanted to
observe the phenomenon of running Ryu in a network with
loops.

In case 2, we studied the required time to find a new path
after a links status has changed when Ryu or NOX was used as
the OpenFlow controller. We purposely broke the link between
nodes 6 and 7 between 40’th sec and 80’th sec and shutdown
the link between nodes 9 and 10 from 0’th sec to 40’th sec
and from 80’th sec to 120’th sec. We studied the required time
that the TCP flow can continue its transmission after a link on
its path fails. We chose node 3 as the TCP sender and node 11
as the TCP receiver and generated endless TCP traffic from
node 3 to node 11. Because over EstiNet one can directly
run real-world Linux applications on simulated hosts without

modification, we chose the open source programs “stcp” and
“rtcp” as the TCP sender and TCP receiver programs. Once
the stcp successfully sets up a real TCP connection with rtcp,
it generates and sends endless TCP data to the rtcp. Both
stcp and rtcp are set to start at 30’th sec rather than 0’th sec.
This is because the OpenFlow controller needs enough time to
discover the topology of the data-plane network and compute
the path-finding and packet-forwarding information before any
packet enters into the data-plane network.

We also studied the effects of the ARP protocol on the
required time that the TCP flow finds a new path. Normally,
on a real network the ARP protocol is enabled and the host
will issue an ARP request to learn (MAC address, IP address)
mapping information. However, avoid the ARP request/reply
latency and bandwidth consumption, the ARP protocol can
be disabled under some circumstances. Our simulation results
show that when ARP is disabled, the path-finding capability
and speed of NOX will significantly reduce.

III. PATH-FINDING AND PACKET-FORWARDING
FUNCTIONS IN RYU/NOX

In this section, we briefly explain how Ryu and NOX
implement the path-finding and packet-forwarding functions.

A. LBP Component in Ryu

Ryu uses its LBP component to perform path-finding and
packet-forwarding functions. When a switch issues a PacketIn
message to Ryu due to a table-miss event, Ryu learns a
“(switch ID, MAC address) = output port” mapping informa-
tion from the packet that causes this table miss. This learned
mapping information helps Ryu know through what “output
port” the switch should forward a packet when its destination
MAC address is the specified “MAC address” here. If Ryu
currently has the mapping information for the destination host,
it will send a FlowModify message to the switch to add a new
flow entry and send a PacketOut message to the switch to
forward the packet out of the specified port. Otherwise it will
send a PacketOut message to the switch to flood the packet
out of all of its ports. Here we use Figure 1 to explain how
Ryu’s LBP works. In order to explain how it works clearly,
we assume that the link connecting nodes 9 and 10 is down
on Figure 1 so that there is no loop in the network.

Suppose that the source host sends a TCP DATA packet
to the destination host. When the packet arrives at node 6,
because there are no flow entries in the flow table that can
match it, node 6 sends a PacketIn message to Ryu and asks it
how to process this packet. After Ryu receives the packet,
it first learns (node 6, node 3’s MAC) = port 3 mapping
information. Because there are no mapping information about
the destination host yet, it sends a PacketOut message to node
6 to flood the packet. After node 7 receives the packet, it issues
a PacketIn message to Ryu and Ryu learns (node 7, node 3’s
MAC) = port 1. It then sends a PacketOut message to instruct
node 7 to flood this packet. On the other hand, after node 9
receives the packet from node 6, the same scenario happens.
It issues a PacketIn message to Ryu. Then, Ryu learns (node

2



The International Symposium on Advances in Software Defined Networks, April 19-24, 2015, Barcelona, Spain

9, node 3’s MAC) = port 2 and sends a PacketOut message to
node 9 asking it to flood this packet. However, because the link
between nodes 9 and 10 is shutdown, node 10 cannot receive
the packet from node 9. After node 10 receives the packet from
node 7, the same scenario happens. Ryu learns (node 10, node
3’s MAC) = port 2 and sends a PacketOut to instruct node 10
to flood this packet. When the destination host receives the
packet, it sends a TCP ACK packet to the source host. When
the packet arrives at node 10, because there are no flow entries
that the packet can match, node 10 issues a PacketIn to Ryu
and Ryu learns (node 10, node 11’s MAC) = port 3. Now,
with the mapping information learned before, Ryu issues a
FlowModify message to node 10 instructing it to add a new
flow entry of (destination MAC = host 3’s MAC, ingress port
= port 3, output port = port 2) and issues a PacketOut message
to node 10 asking it to forward the packet out of port 2. After
node 7 receives the packet, the same scenario happens. Ryu
learns (node 7, node 11’s MAC) = port 2. Then, Ryu issues
a FlowModify message to node 7 instructing it to add a new
flow entry of (destination MAC = host 3’s MAC, ingress port =
port 2, output port = port 1) and issues a PacketOut message
to node 7 asking it to forward the packet to node 3 out of
port 1. After node 3 receives the packet, the same scenario
happens. Ryu sends a PacketOut message to node 3 asking it
to forward the packet to node 3 out of port 3. After the TCP
ACK packet enters node 3, the route from the destination host
to the source host has completed and the related flow entries
have been added into the switches. However, the route from
the source host to the destination host is not completed yet.
Later on, when node 3 sends the second TCP DATA packet
to the destination host, after the packet enters node 6, the
same scenario happens. Node 6 issues a PacketIn message to
Ryu and Ryu issues a FlowModify message and PacketOut
message to node 6. After the packet finally enters node 11,
the route from the source host to the destination host finally is
completed and the related flow entries have been added into
the switches on the path. At this moment, the TCP flow can
bidirectionally send its data along the path composed of nodes
6, 7, and 10 without bothering the Ryu controller.

B. STP and LBP Components in NOX

NOX’s STP uses LLDP [11] packets to discover the topol-
ogy of an OpenFlow network and build a spanning tree over
the network. When an OpenFlow switch establishes a TCP
connection to NOX, NOX immediately sends a FlowModify
message to it and add a flow entry into its flow table.
This flow entry will match future received LLDP packets
and forward them to NOX. To discover the whole network
topology, NOX sends LLDP packets to all switch ports in
the network periodically. The LLDP transmission interval is 5
seconds. If there are N switch ports in the network, NOX
will send a LLDP packet every (5 divided by N) seconds
to evenly spread the LLDP traffic load. For each port of a
switch, NOX will send a PacketOut message to the switch
and ask it to send the LLDP packet carried in the PacketOut
message out of the specified port every 5 seconds. Because

NOX has taught the switch how to process LLDP packets
before, when a switch receives a LLDP packet from other
switches, it will send the received LLDP packet to NOX. With
these received LLDP packets from switches, NOX knows the
complete network topology and can build a spanning tree over
it. For each link in the topology, NOX sends a PortModify
message to the switches at the two endpoints of the link.
This message sets the flooding status of the port connected
to the link to FLOOD/NO FLOOD according to whether the
link is included/excluded in the spanning tree. NOX sets up a
10-second timer that is two times of the LLDP transmission
interval to monitor a link’s connectivity when it has been
detected. When a link’s timer expires, NOX thinks that this
link is currently down and will build a new spanning tree.
Then it sends a PortModify message to switches to change
the flooding status of the affected ports.

NOX’s LBP implementation is similar to Ryu’s LBP imple-
mentation. The only difference is that NOX uses the spanning
tree to prevent the packet broadcast storm problem. We use
Figure 1 to explain how it works on this network topology.
NOX uses STP to build a spanning tree as shown in Figure 1
and the spanning tree is composed of the links in red color
and all links connecting a host to a switch . Suppose that the
source node 3 sends a TCP DATA packet to the destination
node 11. As discussed previously, when node 10 receives the
flooded packet from node 7, it will issue a PacketIn message
to NOX and then NOX issues a PacketOut message to node 10
to instruct it to flood the packet. However, because the status
of port 1 of node 10 is set to NO FLOOD, node 10 will not
flood the packet on port 1.

IV. PERFORMANCE EVALUATION

In this section, we studies two simulation cases. We first
observed the phenomenon of Ryu when it operates in a
network with loops. Then, we studied how quickly a TCP
flow can change its path to a new path under the control of
Ryu and NOX when the topology changes.

A. Case 1

Our simulation results show that critical problems result
when using Ryu as the OpenFlow controller in a topology with
loops. These problems are the packet broadcast storm problem
and insertion of incorrect flow entries into OpenFlow switches.
We use Figure 1 to explain why these problems occur. Before
the source host sends a TCP data packet to the destination
host, it must broadcast the ARP request to learn the destination
host’s MAC address. After node 6 receives this ARP packet,
it issues a PacketIn message to Ryu. Ryu learns the (node
6, node 3’s MAC) = port 3 mapping information from this
ARP packet but Ryu does not know any information about
the destination MAC address, which is the broadcast address.
As a result, Ryu sends a PacketOut message to node 6 asking
it to flood the ARP packet. After node 7 and node 9 receive
the packet, the same scenario happens and both nodes 7 and
9 flood the packet. Later on, node 10 receives the two ARP
packets, one from node 7 and the other from node 9. Here we

3



The International Symposium on Advances in Software Defined Networks, April 19-24, 2015, Barcelona, Spain

assume that the packet from node 9 arrives earlier than the
packet from node 7. For each of these ARP packets, node 10
sends a PacketIn message to Ryu and Ryu sends a PacketOut
message to node 10 asking it to flood the ARP packet.

When node 9 receives the ARP packet flooded from node
10, Ryu learns (node 9, node 3’s MAC) = port 1 and overrides
its information learned before. When node 7 receives the ARP
packet flooded from node 10, Ryu learns (node 7, node 3’s
MAC) = port 2 and overrides its information learned before.
When node 11 receives the ARP packet, it responds an ARP
reply to node 3. When node 10 receives this ARP reply packet,
node 10 issues a PacketIn message to Ryu and Ryu learns
(node 10, node 11’s MAC) = port 3. Ryu sends a FlowModify
message to node 10 instructing it to add a new flow entry
of (destination MAC = host 3’s MAC, ingress port = port 3,
output port = port 2 ) according to the information learned
before. The idle timeout value and the hard timeout value
associated with the flow entry are set to 0 by Ryu. Ryu then
sends a PacketOut message to node 10 asking it to forward
the packet out of port 2. This is because the ARP packet from
node 7 was flooded on node 10 after the ARP packet from
node 9 was flooded on node 10, which causes Ryu to learn
that node 3 can be reached from port 2 of node 10.

According to the OpenFlow protocol, an idle timeout value
specifies after how long the entry should be removed if no
packet of this flow enters the switch to match this flow. On
the other hand, a hard timeout value specifies after how long
the entry should be removed after it has been added to the flow
table. Since Ryu sets both the idle timeout and the hard timeout
values to zero, it means that the flow entry is permanent and
should never expire.

After node 7 receives the ARP reply packet, Ryu sends a
FlowModify message to node 7 instructing it to add a new flow
entry of (destination MAC = host 3’s MAC, ingress port = port
2, output pot = port 2) and sends a PacketOut message to node
7 asking it to forward the packet out of port 2. (This is because
node 7 received the ARP broadcast packet flooded from node
10, which made Ryu learn that node 3 can be reached from
port 2 of node 7.) However, because the packet ingress port
and output port are the same and the flow entry never expires,
node 7 decides to drop the ARP reply packet. Because this
incorrect flow entry has been added into node 7 and it will
never expire due to the timeout value settings, from now on,
any packet sent from node 11 to node 3 will be dropped at
node 7. On the other hand, because Ryu cannot learn the
forwarding information about the broadcast MAC address, it
will ask OpenFlow switches to flood any received ARP request
packet. As a result, for each ARP request packet received on
any OpenFlow switch, it will be copied and flooded many
times in the network. Worse yet, because there is no STP in the
network, these ARP packets will spawn themselves repeatedly
and eventually exhaust all the network bandwidth and cause
the packet broadcast storm problem.

Fig. 2: The timeline for a TCP flow to change/keep its path
after the link between nodes 6 and 7 breaks at 40’th sec

while using Ryu

B. Case 2 - Ryu

We studied how quickly the TCP flow can change its path
to a new path under the control of Ryu. Our results show that
the TCP flow never changes its path to a new path during
the link(6,7) downtime and it becomes active again over the
original path after the link downtime no matter whether ARP
is enabled or disabled.

We use a timeline to display the significant events of TCP
flow and ARP packet when ARP is enabled on hosts in
Figure 2(a). Because we want to observe the related events
of changing to the new path, our timeline only focuses on the
interval from 40’th sec to 120’th sec. We denote the events A,
B, C, D, E and H as the timestamps when the TCP flow tried
to resend a lost packet due to the TCP reliable transmission
design and the events F and G as the timestamps when the
source host broadcasts the ARP request to learn the ARP
record again. These ARP request transmissions occur because
on the source host the ARP record for the destination host
had expired during the long TCP retransmission interval. We
found that there are two ARP packets but not TCP packets at
the timestamps of events F and G. The H event represents the
successful retransmission of the lost packet over the original
path after the link between nodes 6 and 7 becomes up again
at 80’th sec.

In the following, we explain (1) why the TCP flow cannot
change to a new path during the link downtime and (2)
why there are two ARP packets but no TCP packets at the
timestamps of events F and G. The reason why the TCP
retransmission fails at events A, B, C, D, and E are the same.
Before the link breaks at 40’th sec, Ryu uses its LBP to find
a path from the source host to the destination host, which
traverses nodes 6, 7, and 10. Ryu also sends the FlowModify
message and PacketOut message to these switches and set the

4



The International Symposium on Advances in Software Defined Networks, April 19-24, 2015, Barcelona, Spain

idle timeout value and the hard timeout value associated with
the flow entry to 0. At the timestamp of event A, when a TCP
data packet enters node 6 after the link between nodes 6 and 7
breaks, because there is a flow entry in the flow table that the
TCP data packet can match, node 6 forwards the packet out
of port 1 to the broken link. Therefore, the destination host
cannot receive any packets sent from the source host.

At the timestamp of event F, the source host broadcasts
an ARP request before it retransmits the packet lost on the
broken link. When the ARP request enters node 6, because
there is no flow entry that can match a broadcast packet, node 6
sends a PacketIn message to Ryu. Ryu then sends a PacketOut
message to node 6 asking it to flood the packet. As discussed
previously, the ARP request will arrive at the destination host
and the destination host will reply a unicast ARP reply packet
to the source host. When the ARP reply enters node 11, node
11 will forward the packet out of port 2 to node 7 according
to the flow entry that it learned before. When the ARP reply
enters node 7, node 7 will forward the packet out of port 1
over the broken link. Therefore, the source host cannot receive
the ARP reply, which made the source host unable to resend
the TCP data packet. At the timestamp of event H, because the
link downtime has passed, the source host can receive the ARP
reply from the link between nodes 6 and 7 and successfully
resend the TCP data packet. Finally, the TCP flow becomes
active again over the original path.

When ARP is disabled on hosts, as shown in Figure 2(b),
the TCP flow still cannot change to the new path during the
link downtime. The reasons and the phenomenon are the same
as when ARP is enabled on hosts, except for the events F and
G. Because ARP is disabled on hosts, the source host uses
the pre-built ARP table instead of broadcasting ARP request
packets. Therefore, at the timestamps of events F and G, the
source host tried to resend the TCP packet lost on the broken
link rather than broadcasting the ARP request to learn the ARP
record.

We found that the problem that a TCP flow cannot changes
its path to a new path is caused by the improper settings of
values of flow idle timeout and flow hard timeout. To fix this
design flaw, we suggest to modify Ryu so that an installed
flow entry can be expired after some idle period.

C. Case 2 - NOX

The NOX’s spanning tree before the link(6, 7) fails is shown
in Figure 1. After the link(6, 7) breaks at 40’th sec, NOX
rebuilds the spanning tree (to save space, the new spanning
tree is not shown in this paper). In the following, we show
that (1) when ARP is enabled, the TCP flow will change its
path to a new path traversing nodes 3, 6, 9, 10, and 11 at 58’th
sec. However, the TCP flow never changes back to the original
path after the link between nodes 6 and 7 becomes up again;
and (2) when ARP is disabled. The TCP flow never changes
its path to the new path when the link between nodes 6 and
7 was down from 40’th to 80’th and it becomes active again
over the old path at 112.3’th sec. These results are caused by

the settings of the idle timeout and hard timeout values used
in flow entries and NOX’s LBP and STP implementations.

We use the timeline in Figure 3(a) to display the significant
events of a TCP flow when ARP is enabled on hosts. Because
we want to observe the related events of changing to the new
path, our timeline only focuses on the interval from 40’th
sec to 120’th sec. Since the link between nodes 6 and 7
breaks at 40’th sec, as discussed previously, because NOXs
STP monitors a link’s status every 10 seconds, we expected
to see the new spanning tree be built at around 50+’th sec and
the TCP flow change to a new path after the new spanning
tree is built. However, our simulation result shows that the
TCP flow changes its path to the new path at around 59’th sec
rather than at 50+’th sec.

Fig. 3: The timeline for a TCP flow to change/keep its path
after the link between nodes 6 and 7 breaks at 40’th sec

while using NOX

We denote the events A, B, C, D, E, and F as the timestamps
when the TCP flow tried to resend a packet due to the TCP
reliable transmission. The F event represents the successful
retransmission of the lost packet over the new path during the
link downtime. The X event represents the ARP request, which
is triggered by the TCP flow retransmission at the timestamp
of event F. Because the ARP record expires during the long
TCP retransmission interval on the source host, the source host
has to broadcast the ARP request to the network to learn the
ARP record again.

In the following, we explain why the TCP flow changes to
the new path at 50+’th sec when ARP is enabled. The reason
why the TCP retransmission fails at events A, B, C, D, and
E are the same and explained below. When NOX added a
flow entry into a switch’s flow table, the idle timeout value
associated with the entry is set to 5 seconds. According to
EstiNet and NOX logs, we found that NOX formed the new
spanning tree at 51’th sec, which is after the timestamp of
event E. Therefore, all of the resent TCP packets are forwarded
over the broken link and got lost before the new spanning

5



The International Symposium on Advances in Software Defined Networks, April 19-24, 2015, Barcelona, Spain

tree is formed. After NOX rebuilds the spanning tree, it sends
PortModify messages to switches instructing them to modify
the statuses of their ports to FLOOD/NO FLOOD according
to the spanning tree’s status.

As for the retransmission at event F, it succeeds and the
reason is explained below. Because the interval between the
timestamps of events E and F is larger than the value of flow
entry’s idle timeout, the flow entries on all switches will have
expired by event F. Because the ARP record has expired as
well on the source host, the source host broadcasts a ARP
request at the timestamp of event X to learn the mapping
information. After the ARP request enters node 6, because
there is no flow entry in the flow table, node 6 sends a PacketIn
message to NOX asking for forwarding instructions. NOX then
sends a PacketOut message to node 6 asking it flood the ARP
request out of all of its FLOOD ports. As a result, the ARP
request traverses nodes 6, 9, and 10 to reach the destination
host, and the destination host sends back the unicast ARP reply
back to the source host.

We found that the ARP request and reply packets play
very important roles. They not only let NOX learn the latest
forwarding information but also install new and correct flow
entries for ARP packets into all switches. Later on, when the
resent TCP packet enters node 6, because there are no entries
for this TCP flow in its flow table, node 6 sends a PacketIn
message to NOX asking for instructions. NOX then sends a
FlowModify message and PacketOut message to node 6 asking
it to add a new flow entry for this TCP flow and forward
the TCP packet out of port 2. After that, the following TCP
DATA packets and their ACK packets follow the LBP scenario
described before and starts to flow smoothly over the new path
at 58’th sec.

In contrast to the fact that the TCP flow can change its
path to the new path when ARP is enabled, we found that
the TCP flow never changes its path to the new path when
ARP is disabled, as shown in Figure 3(b). The reason why
the TCP retransmission fails at events A, B, C, D, and E
are the same as that described before. At the timestamp of
event E, when the TCP DATA packet enters node 6, node
6 still forwards the packet out of port 1 due to the (old)
matched flow entry. However, this entry has become incorrect
now as the link between nodes 6 and 7 is already broken.
At the timestamp of event F, because the interval between
the timestamps of events E and F is larger than the value
of the flow entry’s idle timeout, each flow entry on every
switches will have expired by event F. When the TCP DATA
packet enters node 6 at event F, because the flow entry for this
TCP flow has expired, node 6 sends a PacketIn message to
NOX asking for instructions. However, because there were no
broadcast ARP packets flooded over the network, NOX has no
chance to update and correct its forwarding information. As
a result, NOX sends a FlowModify message and PacketOut
message to node 6 with incorrect forwarding information and
instructs node 6 to forward the TCP packet over the broken
link. Clearly, the packet cannot reach the destination host. For
the retransmission event G, the same scenario occurs. Finally,

at the timestamp of event H, because the link between nodes
6 and 7 has become up again at 80’th sec, the TCP flow uses
its old path to successfully retransmit its lost packet and starts
to flow smoothly.

Another significant problem we found in Figure 3(a) is
that the TCP flow does not change its path from the new
path to its original path after the link downtime, even though
the spanning tree has been restored to the original one. This
problem is caused by the improper settings of the idle timeout
and hard timeout, which are set to 5 seconds and infinite,
respectively. As long as the TCP flow sends some packets
over the new path every 5 seconds, the flow entries in these
switches will never expire. Since there are flow entries that can
match the incoming TCP packet, these switches need not send
PacketIn messages to NOX to ask for forwarding information.
Therefore, NOX has no chance to install new flow entries into
the flow tables of these switches and the TCP flow still uses
the new path without changing back to its original path.

V. CONCLUSION

In this paper, we used the EstiNet OpenFlow network sim-
ulator and emulator to compare the path-finding and packet-
forwarding behavior of two widely used OpenFlow controllers
— Ryu and NOX. NOX is chosen because it is the world’s
first OpenFlow controller; Ryu is chosen because it is widely
used for cloud orchestration controller applications. Our sim-
ulation results show that Ryu lacks the spanning tree protocol
implementation and will result in the packet broadcast storm
problem when controlling a network with loops. When Ryu
controls a network without a loop, after a link failure, we found
that a TCP flow cannot change to a new path whether ARP is
enabled or disabled. In contrast, we found that NOX enables
a TCP flow to change to a new path when ARP is enabled
but the TCP flow cannot change to a new path when ARP is
disabled. As shown in our studies, the behavior of Ryu and
NOX are very different and their implementations still have
much room to be improved.

REFERENCES

[1] “Software-Defined Networking: The New Norm for Networks,” a white
paper of Open Networking Foundation, April 13, 2012.

[2] Nick Mckeown, Tom Anderson, Hari BalaKrishnan, Guru Parulkar, Larry
Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner, “Open-
Flow: Enabling Innovation in Campus Networks,” ACM SIGCOMM
Computer Communication Review, Volume 38 Issue 2, April 2008.

[3] Open Networking Foundation, https://www.opennetworking.org/
[4] Shie-Yuan Wang, Chih-Liang Chou, and Chun-Ming Yang, “EstiNet

OpenFlow Network Simulator and Emulator,” IEEE Communications
Magazine, September issue, 2013. (to appear)

[5] EstiNet 8.0 OpenFlow Network Simulator and Emulator, EstiNet Tech-
nologies Inc., available at http://www.estinet.com.

[6] Ryu OpenFlow controller, available at http://osrg.github.io/ryu/
[7] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martn Casado,

Nick McKeown, Scott Shenker, “NOX: towards an Operating System for
Networks,” ACM SIGCOMM Computer Communication Review, Volume
38 Issue 3, July 2008. Available at http://www.noxrepo.org.

[8] POX OpenFlow controller, available at http://www.noxrepo.org/
[9] Floodlight OpenFlow controller, available at

http://www.projectfloodlight.org/floodlight/
[10] OpenDaylight controller, available at http://www.opendaylight.org/
[11] Link Layer Discovery Protocol, IEEE 802.1AB standards.

6


