
IEEE Communications Magazine • September 2013110 0163-6804/13/$25.00 © 2013 IEEE

INTRODUCTION

Software-defined networks (SDNs) [1] are a new
type of network that can be programmed by a
software controller according to various needs
and purposes. The goal of SDNs is to facilitate
innovations in network architecture and protocol
designs. To achieve this goal, the OpenFlow pro-
tocol [2] has been proposed to define the inter-
nal architecture of an OpenFlow switch, and the
messages exchanged between an OpenFlow con-
troller and OpenFlow switches. In an OpenFlow
network, because the operation and intelligence
of the network are fully controlled by an Open-
Flow controller, the correctness and efficiency of
the functions implemented by the controller
must be fully tested before its use in a produc-
tion network.

Testing the correctness and evaluating the
performance of a network protocol can be per-
formed through several approaches. One
approach is performing these tests over an exper-
imental testbed (e.g., Emulab [3] and PlanetLab

[4]). Although this approach uses real devices
running real operating systems and applications,
and can generate more realistic testing results,
the cost of building a large experimental testbed
is huge, and generally the testbed is not easily
accessible to many users.

Another common approach is via simulation,
in which the operations of real devices and their
interactions are modeled and executed in a soft-
ware program. The simulation approach has
many advantages such as low cost, and being
flexible, controllable, scalable, repeatable, acces-
sible to many users, and faster than real time in
many cases. However, if the modeling of real
devices is not accurate enough, the simulation
results may differ from the experimental results.
To overcome this problem, the emulation
approach may be used. Emulation differs from
simulation in that an emulation is like an experi-
ment and thus must be executed in real time,
while simulation speed can be faster or slower
than real time. Furthermore, in an emulation
some real devices running real operation systems
and application programs will interact with some
simulated devices. In contrast, in a simulation
generally no real operation systems or applica-
tions are involved.

In this article, we introduce the EstiNet
OpenFlow network simulator and emulator [5].
EstiNet uses an unique approach to testing the
functions and performances of OpenFlow con-
trollers. By using an innovative simulation
methodology, which is called kernel re-entering
[6], EstiNet combines the advantages of both the
simulation and emulation approaches. In a net-
work simulated by EstiNet, each simulated host
can run the real Linux operating system, and any
UNIX-based real application program can readi-
ly run on a simulated host without any modifica-
tion. With these unique capabilities, EstiNet’s
simulation results are as accurate as those
obtained from an emulation while still preserv-
ing the many advantages of the simulation
approach. For example, in EstiNet the simula-
tion need not be executed in real time, but
instead can be faster or slower than real time.
This capability makes it able to correctly simu-
late the performance of an OpenFlow network
that consists of a very large number of Open-
Flow switches and hosts.

In testing OpenFlow controllers, since the

ABSTRACT

In this article, we introduce the EstiNet
OpenFlow network simulator and emulator, and
present its support for testing the functions and
evaluating the performances of software-defined
networks’ OpenFlow controller’s application
programs. EstiNet uses an unique kernel re-
entering simulation methodology to enable
unmodified real applications to run on nodes in
its simulated network. As a result, without any
modification, real NOX/POX or Floodlight
OpenFlow controllers can readily run on a host
in an EstiNet simulated network to control thou-
sands of simulated OpenFlow switches. EstiNet
has the characteristics of a simulator and an
emulator at the same time. It combines the
advantages of the simulation and emulation
approaches without their respective shortcom-
ings. EstiNet uses real OpenFlow controller pro-
grams, real network application programs, and
the real TCP/IP protocol stack in the Linux ker-
nel to generate correct, accurate, and repeatable
SDN application performance results. In this
article, we compare EstiNet with ns-3 and
Mininet regarding their capabilities, perfor-
mance, and scalability.

TOPICS IN NETWORK TESTING

Shie-Yuan Wang, National Chiao Tung University

Chih-Liang Chou and Chun-Ming Yang, EstiNet Technologies, Inc.

EstiNet OpenFlow
Network Simulator and Emulator

IEEE Communications Magazine • September 2013 111

widely used NOX/POX [7] and Floodlight [8]
OpenFlow controllers are real application pro-
grams runnable on Linux, they can readily run
on a host in an EstiNet simulated network to
control thousands of simulated OpenFlow
switches. In EstiNet, because these real Open-
Flow controllers are tested and evaluated in sim-
ulations rather than in emulations, they can
correctly control thousands of simulated Open-
Flow switches based on the simulation clock,
even though the simulation clock has to advance
at a speed slower than real time due to insuffi-
cient computation resource on a machine. The
performance results of a simulated OpenFlow
network managed by these OpenFlow controllers
are correct, accurate, and repeatable in EstiNet.
These performance results can be correctly
explained based on the parameter settings (link
bandwidth, delay, downtime, etc.) and configura-
tions (e.g., network size, mobility pattern, or
speed) of the simulated OpenFlow network.

We have used EstiNet to successfully perform
functional validation and performance evalua-
tion of several protocols that are implemented
by NOX/POX as components. For example, we
have studied the Learning Bridge Protocol
(LBP) and STP (Spanning Tree Protocol) of
NOX/POX, and identified several of their design
and implementation flaws. (Note: In the SDN
community, to be precise, these components are
called controller applications. However, to save
space in the article, when there is no ambiguity,
we just use controller to refer to a controller run-
ning with some components.) In this article, we
compare EstiNet with other similar tools (ns-3
[9] and Mininet [10]) regarding their capabilities.
Then we run the network topology discovery
component of NOX/POX over an N × N grid
network, where N = 5, 6, 7, ..., 15, to study and
compare the execution performance and scala-
bility of EstiNet and Mininet. As shown in the
rest of this article, when one studies the perfor-
mance of an SDN OpenFlow controller’s appli-
cation, EstiNet generates correct, accurate, and
repeatable performance results, but Mininet can-
not. In addition, EstiNet is much more scalable
than Mininet when studying large OpenFlow
networks.

SIMULATION ARCHITECTURE OF

ESTINET

To implement the kernel re-entering methodolo-
gy [6], EstiNet uses tunnel network interfaces to
automatically intercept the packets exchanged by
two real applications and redirect them into the
EstiNet simulation engine. As shown in Fig. 1a,
inside the EstiNet simulation engine, a protocol
stack composed of the medium access control/
physical (MAC/PHY) layers along with other
layers below the IP layer is created for each sim-
ulated host. Packets to be sent out on host 1 are
sent out to the output queue of tunnel interface
1, from which the simulation engine will fetch
them later. After fetching a packet from tunnel
interface 1, the simulation engine processes the
packet through the protocol stack created for
host 1 to simulate the MAC/PHY and many
other mechanisms of the network interface used

by host 1. For example, the effects of the link
delay, link bandwidth, link downtime, and link
bit error rate (BER) are all simulated in the
PHY module. The PHY module of host 1 will
deliver the packet to the PHY module of host 2
after the link delay plus the transmission time of
the packet on this link based on the simulation
clock. Then the packet will be processed from
the PHY module up to the interface module,
where it is written back into the kernel via tun-
nel interface 2. The packet will then go through
the IP/TCP/socket layers and finally be received
by the application running on host 2, which ends
its journey. By this methodology, all Linux-based
real applications can run on a simulated network
in EstiNet without any modification, and they all
use the real TCP/IP protocol stack in the Linux
kernel to create their TCP connections.

Figure 1b shows how we extend this method-
ology to support running a real OpenFlow con-
troller on an EstiNet simulated network. Since

Figure 1. Simulation architecture of EstiNet: a) the host-to-host case; b) the
controller-to-OpenFlowSwitch case.

User space FIFO

MAC8023

Phy

Socket

Socket

Controller

OpenFlow
switch

Host 2’s
application
program

TCP/UDP

Kernel space

Kernel space

(a)

(b)

Socket

(4)

(5)

(6)

(9)

(8)(1)

IP

TCP

IP

(7)(2)

(3)

User space
Host 1 Host 2

Simulation engine

Simulation engine

Interface

ARP

FIFO

MAC8023

TCPDUMP

Phy

Interface

ARP

FIFO

MAC8023

TCPDUMP

Phy

Interface

ARP

FIFO

TCPDUMP

MAC8023

Phy

Interface

ARP

FIFO

TCPDUMP

MAC8023

Phy

Tunnel 2

Tunnel 2Tunnel 1

Host 1’s
application
program

Socket

Tunnel 1

IEEE Communications Magazine • September 2013112

real OpenFlow controllers such as NOX/POX
and Floodlight are normal application programs,
they readily run on a simulated host in EstiNet
without any modification. However, because a
real OpenFlow switch needs to set up a TCP
connection to the OpenFlow controller to
receive its messages, we simulate the operations
of each OpenFlow switch inside the simulation
engine and let it create an OpenFlow TCP sock-
et bound to a network interface (in this example,
the used network interface is tunnel interface 2).
With this design, in EstiNet a simulated Open-
Flow switch can set up a real TCP connection to
a real OpenFlow controller to receive its mes-
sages. All messages exchanged between a real
OpenFlow controller and a simulated OpenFlow
switch are accurately scheduled based on the
simulation clock. Therefore, the results of func-
tional validation and performance evaluation of
a real OpenFlow controller are correct and
repeatable over EstiNet.

CAPABILITY COMPARISON WITH

RELATED TOOLS

Currently, very few network simulators support
the OpenFlow protocol; the most notable one is
ns-3 [9]. The ns-3 tool is the most widely used
network simulator in the world. There is a pro-
ject of ns-3 for supporting the OpenFlow proto-
col, and the version of the OpenFlow protocol
supported is 0.89, which is quite old as the latest
version of OpenFlow as of this writing is already
1.3.1. Ns-3 simulates the operations of an Open-
Flow switch by compiling and linking an Open-
Flow switch C++ module with its simulation
engine code. To simulate a real OpenFlow con-
troller, ns-3 also implements it as a C++ mod-
ule, and compiles and links it with its simulation
engine code. In fact, all devices/objects simulat-
ed in ns-3 are implemented as C++ modules
compiled and linked together with its simulation
engine code to form a user-level executable pro-
gram (i.e., ns-3).

Because the ns-3 program is a user-level pro-
gram, and a real OpenFlow controller such as
NOX/POX is also a user-level program, a real
OpenFlow controller program cannot be com-
piled and linked together with the ns-3 program
to form a single executable program. As a result,
a real OpenFlow controller cannot readily run
without modification on a node in a network
simulated by ns-3. This is why ns-3 has to imple-
ment its own OpenFlow controller from scratch
as a C++ module. This approach wastes much
time and effort to re-implement widely used real
OpenFlow controllers. In addition, the running
behavior of a re-implemented OpenFlow con-
troller module in ns-3 may not be the same as
the behavior of a real OpenFlow controller
because the former is a much-simplified abstrac-
tion of the latter. For example, as documented
in ns-3, STP and the multiprotocol label switch-
ing (MPLS) function are not supported. As
another example, in ns-3 there is no TCP con-
nection between a simulated OpenFlow switch
and its simulated OpenFlow controller. Since
this is not the usage in the real world, the simu-
lation results will differ from the real results

when the TCP connection in the real world
experiences packet losses or congestion.

As of this writing (April 25, 2013), from the
ns-3 official web site and its OpenFlow develop-
er forum, we see that its developers all agreed
that it was too difficult to upgrade ns-3 to sup-
port OpenFlow 1.0, and so far ns-3 still cannot
work with a real external OpenFlow controller.
Due to these reasons, the ns-3 OpenFlow project
has been suspended without progress for a long
time, and it is not used by the SDN research
community.

Regarding network emulators that support
the OpenFlow protocol, currently there are very
few such tools; the most notable one is Mininet
[10]. Mininet uses the virtualization approach to
create emulated hosts and uses the Open vSwitch
[11] to create software OpenFlow switches on a
physical server. The links connecting a software
OpenFlow switch to emulated hosts or other
software OpenFlow switches are implemented by
using the virtual Ethernet pair mechanism pro-
vided by the Linux kernel. Because an emulated
host in Mininet is like a virtual machine, real
applications can readily run on it to exchange
information. A real OpenFlow controller, which
is also a real application, can also run on an
emulated host to set up TCP connections to
software OpenFlow switches to control them.
With this approach, emulated hosts and software
OpenFlow switches can be connected together to
form a desired network topology and be con-
trolled by a real OpenFlow controller. So far,
from the ONS 2013 conference [12] held in
April 2013, one can see that currently Mininet is
the most popular tool used by the SDN research
community.

Although Mininet can be used for rapid pro-
totyping of SDNs, it has several limitations. As
stated in [10], the most significant limitation of
Mininet is its lack of performance fidelity
because it provides no guarantee that an emulat-
ed host in Mininet that is ready to send a packet
will be scheduled promptly by the operating sys-
tem to send the packet, and it provides no guar-
antee that all software OpenFlow switches in
Mininet will forward packets at the same rate.
The packet forwarding rate of a software Open-
Flow switch in Mininet is unpredictable and
varies in every experimental run as it depends on
the CPU speed, the main memory bandwidth,
the number of emulated hosts and software
OpenFlow switches that must be multiplexed
over a CPU in Mininet, and the current system
activities and load. As a result, Mininet can only
be used to study the behavior of an OpenFlow
controller but cannot be used to study any time-
related network/application performance. We
show that Mininet is unscalable and will become
unreliable when the number of software Open-
Flow switches controlled by it increases.

In contrast, EstiNet combines the advantages
of both the simulation and emulation approach-
es without their respective shortcomings. As in
an emulation, in EstiNet a real OpenFlow con-
troller can readily run without modification to
control simulated OpenFlow switches, and real
applications can readily run on hosts running a
real operating system to generate realistic net-
work traffic. However, the operations and inter-

All messages

exchanged between

a real OpenFlow

controller and a sim-

ulated OpenFlow

switch are accurately

scheduled based on

the simulation clock.

Therefore, the results

of functional valida-

tion and perfor-

mance evaluation of

a real OpenFlow

controller are correct

and repeatable over

EstiNet.

IEEE Communications Magazine • September 2013 113

actions among these real applications, the real
OpenFlow controller, the OpenFlow switches,
and the hosts and links in a studied network are
all scheduled by the EstiNet simulation engine
based on its simulation clock, rather than multi-
plexed and executed in an unpredictable way by
the operating system. For this reason, differing
from Mininet, EstiNet generates time-related
OpenFlow performance results correctly, and
the results are repeatable.

In Table 1, we compare the capabilities of
EstiNet, ns-3, and Mininet according to their lat-
est developments. Most comparison results are
self-explanatory; thus, we only explain the scala-
bility and GUI comparison results. EstiNet uses
the kernel re-entering methodology to use a sin-
gle kernel to support multiple hosts, and its sim-
ulation engine process can simulate multiple
OpenFlow switches. As a result, it is highly scal-
able. Ns-3 is also highly scalable as its simulated
hosts, OpenFlow switches, and controller are all
implemented as C++ modules and linked
together as a single process. In contrast, Mininet
needs to run up a shell process (e.g., /bin/bash)
to emulate each host and needs to run two user-
space Open vSwitch processes (one for the data
path and the other for the control path) to emu-
late each OpenFlow switch. As a result, it is less
scalable than EstiNet and ns-3. (Note: Open
vSwitch can also be run in the kernel mode. In
such a mode, only one process needs to be run
for the control path. However, according to our
measurements, Open vSwitch running in the ker-
nel mode makes Mininet less scalable and more
unreliable.) We show the scalability comparison
results between EstiNet and Mininet.

Regarding graphical user interface (GUI)
support, which is very important for the user,
EstiNet’s GUI can be used to easily set up and
configure a simulation case, and to observe the

packet playback of a simulation run. The GUI of
ns-3, on the other hand, can only be used for
observation of the results, and the user needs to
write C++ or scripts to set up and configure the
simulation case. For Mininet, its GUI can be
used for observation purposes only, and the user
needs to write Python scripts to set up and con-
figure the simulation case. One unique and use-
ful feature of EstiNet GUI is that it can show
the playback of OpenFlow control packets after
a simulation is finished. By this capability, an
OpenFlow controller developer can more easily
test and debug her OpenFlow controller pro-
gram by visualizing their behavior over EstiNet.
Figure 2 shows an OpenFlow network topology
that is constructed by the GUI of EstiNet.

In this example network, nodes 3, 4, 5, and 11
are simulated hosts running the real Linux oper-
ating system where real applications can run
without modification. Nodes 6, 7, 8, 9, and 10
are simulated OpenFlow switches supporting the
OpenFlow protocol. Node 1 is the host where
NOX/POX will be running during simulation.
(In the following, we call it the controller node
for brevity.) Node 2 is a simulated legacy (nor-
mal) switch that connects all simulated Open-
Flow switches together with the controller node.
It forms a management network over which the
TCP connection between each simulated Open-
Flow switch and the controller node will be set
up. All OpenFlow messages between NOX/POX
and simulated OpenFlow switches are exchanged
over this management network. In contrast, the
network formed by simulated OpenFlow switch-
es, simulated hosts, and the links connecting
them together is the data network over which
real applications running on simulated hosts will
exchange their information. This figure is one
snapshot of the packet animation playback of
EstiNet. From this figure, one can easily see that

Table 1. A comparison of EstiNet, ns-3, and Mininet.

EstiNet ns-3 Mininet

OpenFlow specification 1.1.0/1.0.0 0.8.9 1.0.0

Simulation mode � � —

Emulation mode � — �

Compatible with
real-world controllers � — �

Result repeatable � � —

Scalability
High

by single process
High

by single process
Middle

by multiple processes

Performance result
correctness �

No Spanning Tree
Protocol and no

real-world controller
No performance fidelity

GUI support
�

• Configuration
• Observation

�
• Observation only
• Using C++ for

configuration

�
• Observation only
• Using Python for

configuration

EstiNet uses the

kernel reentering

methodology to use

a single kernel to

support multiple

hosts and its

simulation engine

process can simulate

multiple OpenFlow

switches. As a result,

it is highly scalable.

IEEE Communications Magazine • September 2013114

packets are flowing along the (host 3, switch 6,
switch 9, switch 10, host 11) routing path.

As of this writing, EstiNet is run on Linux
Fedora 17 with Linux kernel v. 2.6.35. The TCP
version used in this kernel version is TCP cubic,
and the IP protocol version used in the simula-
tion study is IPv4. When we compare the execu-
tion performance and scalability of EstiNet and
Mininet, the notebook machine used is equipped
with an Intel Core i5 CPU at 2.67 GHz and 4
Gbytes of main memory.

NOX/POX’S NETWORK TOPOLOGY

DISCOVERY COMPONENT

NOX/POX’s Network Topology Discovery com-
ponent uses the Link Layer Discovery Protocol
(LLDP) [13] packets to discover the topology of
an OpenFlow network. For each switch, after it
is powered on and has established a TCP con-
nection to NOX/POX, NOX/POX immediately
sends it a FlowModify message to add an entry
into its flow table. This flow entry will match
future received LLDP packets, and its associated
action is “Send the received LLDP packet to the
controller.” For each port of a switch, every 5 s
(the LLDP transmission interval) NOX/POX
sends a PacketOut message to the switch asking
it to send the LLDP packet carried in the Pack-
etOut message out of the specified port. Since
every switch has already had a flow entry match-
ing received LLDP packets, when a switch
receives an LLDP packet from one of its neigh-
boring switches, it will send the received LLDP
packet to NOX/POX using the PacketIn mes-
sage. With these received LLDP packets from all
switches, NOX/POX builds the complete net-
work topology and can compute a spanning tree
over it if the network topology contains loops.

From the above explanations, one sees that
the PacketIn and PacketOut messages triggered
by the exchanges of LLDP packets on a large
network can cause a heavy processing burden for
NOX/POX. If the total port count of the net-
work is N, then NOX/POX will have to send N
PacketOut messages and receive N PacketIn
messages every 5 s just for LLDP packets alone.
The transmission interval of LLDP packets on
NOX/POX is thus 5/N s. It is clear that as N
increases, the loads imposed on NOX/POX will
become heavier and heavier.

EXECUTION PERFORMANCE AND

SCALABILITY COMPARISON OF

ESTINET AND MININET

To compare the execution performance and scal-
ability of EstiNet and Mininet, we run
NOX/POX’s network topology discovery compo-
nent on an N × N grid network, where N = 5, 6,
7, 8, 9, 10, 11, 12, 13, 14, and 15. For a grid net-
work of size N, it has N * N OpenFlow switches.
A source host is attached to the top left corner
switch of the grid, and a destination host is
attached to the top right corner switch of the
grid. For Estinet, we set the bandwidth and
delay of all links in the network to 10 Mb/s and
1 ms, respectively. For Mininet, because it has
no concept of time and cannot simulate the link
delay, bandwidth, downtime, and so on, these
link attributes are meaningless. We run the real-
life ping program on the source host to ping the
destination host 100 times and record the mea-
sured ping reply delays. We call such a 100-ping
process a run, and call the average of the 100
ping reply delays of a run the average ping delay
(APD) of a run for easier discussion. In the fol-
lowing, we present the APD (milliseconds) and
the main memory consumption (megabytes) of
EstiNet and Mininet for different sizes of an N
× N grid network.

ESTINET

EstiNet is a network simulator with its own sim-
ulation clock for controlling the execution timing
of the simulated network. All real application
programs (including ping) running over it are
triggered by its simulation clock rather than the
real-time clock. Therefore, for an N × N grid
network, the 100 ping reply delays of a run are
all the same (i.e., 1 ms link delay * (N + 1) hops
* 2 round-trips); thus, the APD of the run is the
same as any measured ping reply delay of the
run. When N increases, the APD of a run
increases linearly with N as the ping packet
needs to pass (N + 1) hops to reach its destina-
tion.

As a network simulator, EstiNet accurately
lets the ping program measure and report the
correct ping reply delay for any ping packet over
a grid network of size N. Result correctness is
not a concern for EstiNet for any value of N.
The only concern is how EstiNet may slow down
its simulation speed and how much main memo-
ry space it may consume as N increases.

Figure 3a shows the time required to simulate
10 s of the grid network under different values

Figure 2. An OpenFlow network topology constructed by the GUI of EstiNet.

C

O

O

O

DATA

DATA

DATA

DATADATA

DATA
DATA

DATA

DATA

DATA

DATA

DATA
DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA
DATA

DATA

DATADATA

DATA

DATA

DATA

DATA

DATADATA

O

O

10

8
8

5

11

4

1

2

7

6

3

10

9

IEEE Communications Magazine • September 2013 115

of N, where there are N * N OpenFlow switches
in the grid network. As explained before,
because when N increases the LLDP traffic
loads imposed on NOX/POX and software
OpenFlow switches increase as well, it is natural
that EstiNet needs to take more time to finish
simulating 10 s of the grid network when N
increases.

Figure 3b shows the main memory space con-
sumed by EstiNet to simulate the grid network
under different values of N. These results are
obtained using the “top” command in Linux,
which can report the main memory space cur-
rently used by a process. Because each simulated
OpenFlow switch needs to take a fixed amount
of memory space, it is natural that EstiNet needs
to take more memory space to simulate an N ×
N grid network when N increases. Comparing
EstiNet with the memory space consumed by
Mininet, shown in Fig. 4d, one sees that EstiNet
consumes much less memory space than Mininet
when both tools simulate/emulate the same net-
work.

MININET

Mininet is a network emulator without the con-
cept of time. Using Mininet to control many
software OpenFlow switches is like doing an
experiment and must be performed in real time
without much delay. Otherwise, the results will
be different from the results obtained over a real
network where NOX/POX and all OpenFlow
switches run independently on different
machines. Since the ping reply delay obtained
over Mininet depends on many factors of the
machine (CPU speed, main memory bandwidth,
the number of software OpenFlow switches that
need to run concurrently on the machine, and
many other activities such as disk I/O accesses
on the machine) and has nothing to do with the
link delay and link bandwidth settings of the
links in a grid network, for a grid network of size
N, almost all of the 100 ping reply delays of a
run measured over Mininet in real time are dif-

ferent from each other. (Note: ping’s reply delay
is reported in the unit of ms using the
time=xx.yyy format.) For this reason, in addition
to calculating the APD of a run, we also calcu-
late the standard deviation of the 100 ping reply
delays of a run and use StdDev to represent it.

Knowing that Mininet’s performance results
cannot be explained and are unrepeatable, here
we do not care about the result correctness
problem but instead care about at what size of N
will Mininet’s operations start to lag behind the
real time. This is because from that size beyond,
the performance results obtained over Mininet
(e.g., the round-trip time, RTT, delay measured
by ping) become unreliable and start to deviate
from the correct value by a larger and larger dif-
ference.

As we increase the size of N to record the
100 ping reply delays of a run over Mininet, we
have found that starting at N = 7 (i.e., when
there are 49 software OpenFlow switches in the
network), Mininet starts to become very unreli-
able. Often a run cannot finish by collecting 100
ping reply delays; instead, the ping program
hangs forever without outputting any more ping
reply delay. Therefore, for each grid network
size of N, we performed 10 runs, counted the
number of failed runs, and calculated its no-
response failure rate. Figure 4b shows the failure
rate of Mininet under different sizes of N. One
sees that as N increases beyond 7, Mininet quick-
ly becomes very unreliable, making it almost
unusable when controlling more than 49 soft-
ware OpenFlow switches.

For the 10 runs conducted for a grid network
size of N, we averaged the APDs of successful
runs to obtain an AAPD for this network size.
Similarly, we averaged the StdDev’s of successful
runs to obtain AStdDev for this network size.
Figure 4b shows the AAPD for different values
of N. One can see that as N increases beyond 7,
Mininet starts to seriously lag behind real time,
and the AAPD increases very rapidly. Figure 4c
shows the AStdDev for different values of N.

Figure 3. Performance of EstiNet when NOX/POX controls different numbers of OpenFlow switches: a) number of OpenFlow switches
in the network; b) number of OpenFlow switches in the network.

Number of OpenFlow switches in the network

(a)

200

100

0R
e
q

u
ir

e
d

 t
im

e
 t

o
 s

im
u

la
te

 1
0
 s

 o
f

th
e
 n

e
tw

o
rk

s
(s

)

200

300

400

500

600

700

40 60 80 100 120 140 160 180 200 220 240

Number of OpenFlow switches in the network

(b)

200

100

0

M
a
in

 m
e
m

o
ry

 c
o

n
su

m
p

ti
o

n
 (

M
b

yt
e
s)

200

400

300

500

40 60 80 100 120 140 160 180 200 220 240

IEEE Communications Magazine • September 2013116

Again, one sees that as N increases beyond 7,
the AStdDev increases very rapidly as well. This
means that for a given run, the differences
among the 100 ping reply delays become very
huge, making Mininet’s results very untrustwor-
thy. Note that both Figs. 4b and 4c only show
the results for the values of N up to 9. This is
because when N is greater than 9, the failure
rate has become so high that only one or two (or
even zero) out of 10 runs are successful, which
makes the calculation of AAPD and AStdDev
meaningless. Figure 4d shows the memory space
consumed by Mininet for different values of N.
Compared with Fig. 3b, one sees that Mininet
consumes much more memory space than
EstiNet when they emulate/simulate the same
network.

CONCLUSION

In this article, we present the EstiNet OpenFlow
network simulator and emulator, and explain
how its unique kernel re-entering methodology
enables real OpenFlow controllers such as
NOX/POX or Floodlight to control thousands of
its simulated OpenFlow switches. By this
methodology, EstiNet combines the advantages
of both the simulation and emulation approach-

es without their respective shortcomings. EstiNet
is a useful tool to test the functions and evaluate
the performance of an SDN OpenFlow con-
troller’s application programs. Its generated per-
formance results can be correctly explained
based on the network parameters settings and
the protocol design of the used SDN OpenFlow
controller’s application programs. In this article,
we compare EstiNet with ns-3 and Mininet from
many aspects. Specifically, we focus on the com-
parison of EstiNet and Mininet and show that:
• EstiNet generates correct performance

results, while Mininet’s performance results
are untrustworthy.

• EstiNet is much more scalable than Mininet
when studying large OpenFlow networks.

EstiNet can also operate in the emulation mode,
in which a machine running a real OpenFlow
controller such as NOX/POX or Floodlight (or
even a network virtualization tool such as
FlowVisor [14]) can control an OpenFlow net-
work simulated by EstiNet (in real time) on
another machine. These two machines are con-
nected by a physical wire such as an Ethernet
cable so that OpenFlow messages can be
exchanged between them. Due to space limita-
tions, the details of this kind of usage are not
presented in this article.

Figure 4. Performance of Mininet when NOX/POX controls different numbers of OpenFlow switches.

Number of OpenFlow switches in the network

(a)

200

0

N
o

 r
e
sp

o
n

se
 f

a
il
u

re
 r

a
te

0.2

0.4

0.6

0.8

1

40 60 80 100 120 140 160 180 200 220 240

Number of OpenFlow switches in the network

(b)

200
0

A
A

P
D

 (
m

s)

200

400

600

800

1000

40 60 80 100 120 140 160 180 200 220 240

Number of OpenFlow switches in the network

(c)

200

A
S
td

D
e
v

(m
s)

1400

1600

1200

1000

800

600

400

200

0
40 60 80 100 120 140 160 180 200 220 240

Number of OpenFlow switches in the network

(d)

200
0

M
a
in

 m
e
m

o
ry

 c
o

n
su

m
p

ti
o

n
 (

M
b

yt
e
s)

100

200

300

400

500

40 60 80 100 120 140 160 180 200 220 240

IEEE Communications Magazine • September 2013 117

REFERENCES

[1] ONF, “Software-Defined Networking: The New Norm for
Networks,” white paper, Apr. 13, 2012.

[2] N. Mckeown et al., “OpenFlow: Enabling Innovation in
Campus Networks,” ACM SIGCOMM Comp. Commun.
Rev., vol. 38, issue 2, Apr. 2008.

[3] B. White et al., “An Integrated Experimental Environ-
ment for Distributed Systems and Networks,” Proc. 5th
Symp. Op. Sys. Design and Implementation, Boston,
MA, Dec. 2002, pp. 255–70.

[4] B. Chun et al., “PlanetLab: an Overlay Testbed for
Broad-Coverage Services,” ACM SIGCOMM Comp. Com-
mun. Rev., vol. 33, issue 3, July 2003.

[5] EstiNet 8.0 OpenFlow Network Simulator and Emulator,
EstiNet Technologies Inc., http://www.estinet.com.

[6] S. Y. Wang and H. T. Kung, “A Simple Methodology for
Constructing Extensible and High-Fidelity TCP/IP Net-
work Simulators,” IEEE INFOCOM ’99, New York, Mar.
21–25, 1999.

[7] N. Gude et al., “NOX: Towards an Operating System
for Networks,” ACM SIGCOMM Comp. Commun. Rev.,
vol. 38, issue 3, July 2008.

[8] Floodlight OpenFlow controller, http://www.project-
floodlight.org/floodlight.

[9] T. R. Henderson, M. Lacage, and G. F. Riley, “Network
Simulations with the ns-3 Simulator,” ACM SIGCOMM
’08, Seattle, WA, Aug. 17–22, 2008.

[10] B. Lantz, B. Heller, and N. McKeown, “A Network in a Lap-
top: Rapid Prototyping for Software-Defined Networks,”
ACM Hotnets ’10, Monterey, CA, Oct. 20–21, 2010.

[11] B. Pfaf et al., “Extending Networking into the Virtual-
ization Layer,” Proc. HOTNETS 2009.

[12] Open Networking Summit 2013, Santa Clara, CA, Apr.
15–17, 2013.

[13] IEEE 802.1AB, “Link Layer Discovery Protocol.”
[14] R. Sherwood et al., “FlowVisor: A Network Virtualiza-

tion Layer,” http://www.openflow.org/downloads/
.../openflow-tr-2009-1-flowvisor.pdf.

BIOGRAPHIES

SHIE-YUAN WANG (shieyuan@cs.nctu.edu.tw) is a professor
in the Department of Computer Science at National Chiao
Tung University, Taiwan. He received his Master’s and Ph.D.
degrees in computer science from Harvard University in
1997 and 1999, respectively. He received the Outstanding
Information Technology Elite Award of the Taiwan R.O.C.
government in 2012, which was bestowed by the Vice
President of Taiwan R.O.C..

CHIH-LIANG CHOU (clchou@estinet.com) received his Ph.D.
degree from the Department of Computer Science, Nation-
al Chiao Tung University. Now, he is the research director
of EstiNet Technologies, Inc.

CHUN-MING CHAN (momo@estinet) received his Master’s
degree from the Department of Computer Science, Nation-
al Chiao Tung University. He is an engineer with EstiNet
Technologies, Inc.

